Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J Genet ; 2008 Dec; 87(3): 235-40
Article in English | IMSEAR | ID: sea-114483

ABSTRACT

In Drosophila melanogaster, dosage compensation occurs through hypertranscription of sex-linked genes in males. The hypertranscription involves acetylation of histone 4 at lysine 16 (H4K16) on amale X-chromosome, brought about by a histone acetyltransferase encoded by the dosage compensation gene, males absent on the first (mof). We report a phenomenon in the strain In(1)B(M2)(reinverted) of D. melanogaster where the global structure of the male X-chromosome can be altered at the third instar larval stage through a 4-h cold shock at 12+/-1 degrees C. We show that the cold shock results in a transient hyperacetylation of H4K16 and an increased expression of MOF. Control proteins H4 acetylated at lysine 5, and the dosage compensation gene msl-2, do not show any change in expression after cold shock. Cytology of the male X-chromosome at different time points during cold shock and recovery, suggests that the hyperacetylation of H4 at lysine 16 causes the X-chromosome to corkscrew into itself, thereby achieving the cold-induced change in the higher order structure of the male polytene X-chromosome. Our studies suggest a role for H4K16 in maintaining the structure of the male X-chromosome in Drosophila.


Subject(s)
Acetylation , Animals , Cell Nucleus/metabolism , Cold Temperature , Drosophila melanogaster/metabolism , Female , Histones/metabolism , Immunoblotting , Larva/metabolism , Lysine/metabolism , Male , X Chromosome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL